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Abstract. This paper presents Solid, a decentralized platform for social
Web applications. In Solid, users’ data is managed independently of the
applications that create and consume this data. The user’s data is stored
in a Web-accessible personal online datastore (or pod). Solid allows users
to have one or more pods from different pod providers, while at the same
time enabling users to easily switch between providers. Developers can
use Solid protocols, which is based on existing W3C recommendations,
for reading, writing and access control of the contents of users’ pods.
In Solid architecture, applications can operate over data owned by the
user or the user has access to regardless the location of this data on
the Web. Users can also control access to their data, and have the op-
tion to switch between applications at any time. This is paradigm shift
in integrating social features into Web applications. Our new paradigm
produces a novel line of social applications. We have used Semantic Web
technologies to build Solid prototypes, allowing us to demonstrate its
utility through a set of applications for common day-to-day tasks. We
also conduct experiments to show the scalability of the Solid prototypes.
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1 Introduction

Today there are many Web applications developed to foster social interaction. In
this paper, we refer to these applications as social Web applications. There are
many successful social Web applications, such as Facebook, Twitter, Wikipedia,
Craigslist, Doodle, and many more. Developers of social Web applications can
either build their own platform for storing and sharing data, or rely on existing
social network platforms. Unfortunately, these platforms have their own proto-
cols and APIs for storing and accessing data, as well as for access control.
Centralized social Web platforms can also cause numerous problems for users
and application developers. For example, users cannot easily move data between
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platforms or switch between similar applications that would reuse their data.
Moreover, existing social network platforms control the data access APIs and
often change its features', thus freedom from these platforms is important. This
is particularly the case for applications that access valuable data — e.g., from
the financial or medical domain. Developers are restricted to the data access
APIs provided by a specific platform, and cannot easily develop applications
that can run on multiple platforms. These and other problems of centralization
have been recognized for a long time, and there have been many proposals for
decentralizing the social Web such as Diaspora?, Musubi [3], and WebBox [18],
among others. However, none of these proposals has been widely adopted yet,
and the technical details of the decentralization platform are still very much a
topic of discussion among researchers and practitioners (see, for example, the
recent Redecentralize conference?).

This paper presents a decentralized platform for social Web called Solid (for
Social Linked Data). Solid is based on RDF and Semantic Web technologies, and
it achieves the goals of providing data independence and simple yet powerful
data management mechanisms. In Solid, each user stores their data in an online
storage space that we call a personal online datastore (pod). Pods are Web-
accessible storage services, which can either be deployed on personal servers by
the users themselves, or on public servers by pod providers similar to current
cloud storage providers (e.g., Dropbox). It is possible for a user to have more
than one pod. A user can choose among different pod providers, since Solid
applications can work with any pod server regardless of its location or service
provider. Different pod providers can offer different degrees of privacy, reliability
(e.g., availability or latency guarantees), or legal protection (e.g., the legal frame
specific to the country where the pod is hosted).

Solid applications are implemented as client-side Web or mobile applications
that read and write data directly from the pods. Solid makes it easy to develop
and use social features, because application data is always accessible on the
Web, under the governance of an access control mechanism. Applications can
aggregate data from different sources on the Web by accessing both the pod of
the user running the application and pods belonging to other users. Solid allows
multiple applications to reuse the same data on a pod. Users can choose among
different applications that provide similar functionality. When a user switches to
a new application, this application can access all the user’s existing data, since
applications are by design decoupled from the data that they use.

Pod providers also benefit from Solid because users can switch providers
easily, so there is a lower barrier to entry for new providers. Moreover, since
users have a high degree of control over their data, these users are more likely
to store data with larger volume and variety in their pods. A larger volume
and variety of data per user is good for pod providers. For example, a pod

! http://techcrunch.com/2015/04/11 /twitter-cuts-off-datasift-to-step-up-its-own-
b2b-big-data-analytics-business/

2 https:/ /diasporafoundation.org

3 http://redecentralize.org/conference/
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provider that is supported by advertising can run analytics on the wide variety
of data stored in each pod (with the user’s consent, of course) to decide the best
advertisement to serve to the user.

In summary, this paper presents the design of decentralized platform for
social Web applications. Our platform supports collaborative data management
that remains under the control of its owners. Our contributions are as follows:

— We developed the Solid platform*, which allows Web and mobile developers
to easily develop social applications with high degree of flexibility and in-
teroperability in accessing data in users’ pods. Solid combines several Web
standards, such as WebID, Linked Data Platform, RDF, and SPARQL, in
a coherent manner. By doing so, it offers a standards-based incentive to the
developers to adopt this technology.

— We developed several prototypes for pod servers, which can be used directly
by a user or a service provider to manage user’s data and enable access to
it by Solid applications.

— We developed several Solid applications for common day-to-day tasks, such
as a contact manager, microblogging, scheduler and calendar applications,
and conducted experiments to show that Solid is capable of accommodating
a variety of application use cases, and to study the behavior of our pod
servers when working with multiple pods.

The rest of this paper is organized as follows. Section 2 presents an overview
of the Solid platform. In Section 3, we highlight Solid’s decentralized identity and
authentication mechanism. Section 4 presents the data access protocol in Solid.
Section 5 describes the requirements for pod management systems and overviews
our different prototypes. In Section 6, we present a set of Solid applications and
evaluate the performance of our pod systems. Section 7 presents related work
and Section 8 concludes.

2 The Solid Platform

The Solid platform relies as much as possible on existing W3C standards to re-
alize the architecture shown in Figure 1. The platform specifies all the protocols
required in the figure, such as authentication, application-to-pod and pod-to-
pod communications. In this section, we present an overview of how applica-
tions access data in Solid, with more details in the following sections. Our Solid
organization in gitHub has the details of the Solid specification®.

In Solid, applications use authentication protocols as means to discover the
user’s identity and profile data, as well as relevant links that point to the user’s
pod and application data. Decentralized authentication, a global ID space, and
global single sign-on are a critical part of the Solid ecosystem. Solid uses We-
bID [13] to provide these features, although other solutions exist and can poten-
tially interoperate with Solid. In Solid, a user has to register with an identity

4 https://github.com/solid/
® https://github.com/solid/solid-spec
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Fig. 1. Solid Architecture. The user controls his/her identity using an RDF profile
document, often stored on a pod server. The user loads a Solid application from an
application provider. The application obtains the user’s pod from the identity profile.
It then follows links from the profile to discover data on the user’s pod, as well as on
other pods, performing authentication when needed.

provider, most likely being his/her pod provider. The identity provider stores
the user’s WebID profile document associated with a cryptographic key.

In Solid, data is managed in a RESTful way, as defined by the Linked Data
Platform (LDP) recommendation [8]. New data items are created in a container
(which could be called a collection or directory) by sending them to the container
URL with an HTTP POST or issuing an HTTP PUT within its URL space.
Items are updated with HTTP PUT or HTTP PATCH. Items are removed with
HTTP DELETE. Items are found using HTTP GET and following links. A GET
on a container returns an enumeration of the items in the container.

Application data in Solid is stored in documents that are identified by a
Uniform Resource Identifier (URI).Solid distinguishes between structured data
represented using the Resource Description Framework (RDF), and unstructured
data can be of any type (e.g., videos, images, Web pages, etc.). This allows
structured data to be parsed and serialized in various syntaxes like Turtle, JSON-
LD (JSON with a ”context”), or RDFa (HTML attributes). RDF follows the
REST principles in which resources have individual URIs.

Solid applications read and write data stored in users’ pods via REST-
ful HTTP operations. Besides LDP support, Solid servers may offer optional
SPARQL support. Servers that support SPARQL allow applications to express
complex data retrieval operations, including operations that require server-to-
server communication via link-following SPARQL (more details in Section 4.3).
This simplifies Solid application development, since it enables a developer to
delegate complex, multi-pod data retrieval operations to the server.

In Solid, the pod servers are application-agnostic, so that new applications
can be developed without having to modify the servers. For example, even though
LDP 1.0 contains nothing specific to ”social”, many of the Social Web Working
Group User Stories® can be implemented in Solid, using only LDP and applica-
tion logic, with no need to change code on the server.

5 http://www.w3.org/wiki/Socialwg/Social_API/User_stories
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3 Decentralized Identity System

Solid applications do not require authentication like most common applications
do, since the user does not need to authenticate to the application provider.
Instead, Solid applications may force a “fake” authentication request in order to
obtain the user’s WebID from the client certificate. From then on, authentication
is only performed between the client (browser) and the user’s pod where data is
located. This practice saves the users the trouble of having to type their WebID
during the login process.

For Solid to operate in a truly decentralized manner, it requires a global
identity space in which users can easily manage and extend their own identity
and credentials. While existing identity protocols such as OAuth [5] and OpenID
Connect [10] offer a certain degree of decentralization, they do not fit our pref-
erence for RDF-based profile data, making it difficult to extend the profile in-
formation with additional user attributes. Solid uses WebID [13] to implement a
global identity management architecture based on the concept of decentralized
identity providers, which in turn when coupled with WebID-TLS [7] allows for
Web-scale single sign-on.

3.1 Decentralized Identity based on WebID

A global and decentralized social Web requires that each person be able to control
their identity and that this identity be linkable across sites, thus placing each
person in a Web of relationships. WebID is a simple and universal identification
mechanism that is decentralized and openly extensible. It is currently a work-
in-progress open standard within the World Wide Web Consortium (W3C)7, to
which we are actively contributing.

The general idea behind WebID is that agents (e.g., a person, an organization,
a group, etc.) create their own identities by linking a unique identifier in the form
of an HTTP(S) URI to a profile document, a type of Web page that any Web user
is familiar with, and which uses a standardized RDF serialization format. The
profile document contains all the necessary information to create a Web of trust
which allows people to link together their profiles in a public or private manner.
Such a Web of trust may then be used by Web services to make authorization
decisions, by allowing access to resources depending on the properties of an
agent, such that he/she is known by some relevant people, works at a given
company, is a family member, is part of some group, etc.

3.2 WebID-TLS Authentication

The WebID-TLS protocol® is a decentralized authentication protocol which en-
ables secure and efficient authentication on the Web. It enables people to au-
thenticate onto any site by simply choosing one of the client certificates proposed

" http://www.w3.org/2005/Incubator/webid /spec/identity
8 http://www.w3.org/2005/Incubator/webid /spec/tls
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to them by their browser. These certificates can be created by any Web site for
its users. Unlike classic client certificate authentication that relies on Public Key
Infrastructure (PKI), WebID-TLS does not require the certificates to be signed
by a trusted Certificate Authority. The reason is that WebID-TLS uses client
certificates simply as a means to perform public key authentication.

The client certificate contains a field called Subject Alternative Name in which
the WebID is located, thus linking the certificate (i.e., the key pair) to the user’s
WebID. During the authentication process, verifiers only need to match the
certificate’s public key against the public keys listed in the profile document
obtained by dereferencing the WebID. From a user’s point of view, the complete
process of WebID-TLS authentication is simply a one click operation in which
he/she chooses the WebID certificate. The user is not required to remember
and expose any credentials (e.g., password) in order to authenticate. Work has
been done to extend WebID-TLS with access delegation [17], allowing agents to
perform tasks on behalf of users.

4 The Read/Write Protocol

The Solid read /write protocol enables application-to-server and server-to-server
communication. Currently, two possible methods of reading and writing data are
supported. A RESTful method based on the Linked Data Platform (LDP) [8] (a
recent Recommendation from W3C), and a method based on SPARQL queries.
The LDP protocol supports basic manipulation and retrieval of resources. SPARQL
and link-following SPARQL are used for complex data retrieval.

4.1 Basic Data Manipulation using LDP

The Linked Data Platform (LDP) specification defines a set of rules for HTTP
operations on Web resources, some based on RDF, to provide an architecture
for reading and writing Linked Data on the Web. The most important feature
of LDP is that it provides us with a generic and standard way of RESTfully
writing resources (documents) on the Web, without having to rely on less flex-
ible conventions (APIs) based around sending form-encoded data queries using
POST. LDP focuses on two important concepts, resources and containers.

LDP Resources (LDPRs) are HTTP resources that comply to simple pat-
terns and conventions defined by LDP. LDPRs can be RDF or non-RDF re-
sources. LDP defines how Web servers should handle HTTP requests to create,
access, modify, or delete LDPRs. In Solid, the LDPR is the minimum data gran-
ularity accessed by an application (e.g., an event in a calendar application).

LDP Containers (LDPCs) are collections of LDPRs, similar to how blog
posts are grouped into blogs, wiki pages are grouped into wikis, and products
are grouped into catalogs. LDPCs are themselves LDPRs, which means that one
can create a hierarchy of nested LDPCs, similar to a directory hierarchy in a file
system. Adopting LDP is important for Solid since developers no longer have to
create new APIs every time they create Linked Data applications.
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4.2 Extensions to LDP

We have found that in some cases, using the existing LDP features was not
enough. For instance, to optimize certain applications we needed to aggregate
all resources from a container and retrieve them with a single GET operation.
We implemented this feature in a similar way to “globbing” in the UNIX shell.
Doing a GET on any URI which ends with a “*” will return an aggregate of
all the resources that match the indicated pattern. For example, if one would
like to fetch all resources of a container in one request, they could do a GET on
https://example.org/data/*. The aggregation process is not recursive, so it will
not apply to child containers.

Another useful feature that is not yet part of LDP deals with using HTTP
PUT to create new resources. This feature is useful when the client wants to make
sure it has absolute control over the URI namespace (e.g., migrating from one
pod to another). Although this feature is defined in the HT'TP specification [4],
we decided to improve it slightly by having servers create the full path to the
resource if it did not exist before. For instance, consider a calendar application
that uses a URI path structure based on dates (i.e., /2016/05/01/eventl) where
event! is a new event. A PUT request is to create a new resource called eventl,
as well as the missing month (i.e., 05) and day (i.e., 01) containers under /2016/.

4.3 Complex Data Retrieval

LDP cannot express complex data retrieval operations such as filtering and ag-
gregation. Application development can be significantly simplified if the applica-
tion can delegate such complex operations to the server. In Solid, all pod servers
must support LDP, while some servers may optionally support SPARQL.

Applications that rely on SPARQL support can express complex data pro-
cessing tasks using SPARQL queries and delegate these tasks to a SPARQL-
supporting server. We classify SPARQL queries in Solid into link-following and
local queries. A local query accesses only predicates located on the user’s pod,
while a link-following query is a query that accesses predicates on multiple pods
by following links between the user’s pod and other users’ pods.

The query does not need to explicitly refer to these remote pods. The pod
server of the user issuing the query is to recover the links to be followed in other
pods. Therefore, the developer does not need to know the actual distribution of
the data. The pod server can tell that this is a link following query if it accesses
data in two different pods. The SPARQL endpoint of a user’s pod is advertised
through Link headers that can be discovered when doing HTTP GET/HEAD
on the URI of the user’s pod.

The server has to support SPARQL query processing on heterogeneous and
logically integrated data stores. There are different systems proposed for such
query processing, such as Fedx [14] and ANAPSID [1]. A pod server can use one
of these systems or develop its own mechanism.
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Fig. 2. Pod architecture. A pod stores RDF and non-RDF resources. Pod servers
support LDP, patching resources, access control, live updates, and optionally SPARQL.

5 The POD Management System

This section presents an overview of the features that should be implemented
by any pod server, illustrated in Figure 2. Pods use LDP to organize data into
containers that group together resources, giving each container and resource their
own URI. A pod server supports patching resources, access control lists (ACLs),
live updates, and optionally SPARQL. We developed several Solid prototype
servers, namely gold?, Idnode'?, ldphp'!, and meccano'?, which are currently
available as public services on the Web [9].

5.1 Resource Storage

There are several ways in which the underlying storage for RDF data can be
implemented in a pod server, e.g., using the file system, a key-value store, a
relational database system, or a graph database system (i.e., a triple store). The
file system is the option adopted by three of our pod implementations: ldphp,
gold, and ldnode. In this case, both RDF and non-RDF resources are stored as
files, including the ACL resources and the metadata documents corresponding
to non-RDF resources. File systems ensure efficient access to text and binary
files, so using a file system suits applications that require only resource-level
manipulation, e.g., reading or writing a document.

There are several efficient RDF engines, and it is worth considering using
them for storing the RDF data (container metadata and RDF resources). The
RDF database system can also be used to store the metadata of non-RDF re-
sources, while the resources themselves are stored elsewhere such as in a file
system. Using an RDF database simplifies querying large data sets, efficient
data retrieval (i.e, subsets of graphs), as well as patch operations. However, sup-
porting LDP and ACLs requires more work than for a file-based implementation.

9 https://databox.me
10 https://databox2.com
" https://rww.io
!2 https://meccano.io
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Our meccano server stores data in the Jena'® RDF database system and im-
plements all Solid operations via SPARQL queries. Meccano also implements
complex data retrieval through link-following SPARQL.

5.2 LDP and Patching Support

Pods should support basic LDP [8] operations that apply to resources and con-
tainers, namely HTTP GET, POST, DELETE, OPTIONS and HEAD, plus our
extensions to LDP discussed in Section 4.1. Supporting LDP operations in a file
system is straightforward since they deal with resources that can be mapped
directly into the file system namespace. Special adaptors may be needed when
using a database system, since each LDP operation has to be mapped to an
equivalent query or a set of queries supported by the underlying DB system.
Solid uses basic SPARQL queries to patch resources. Depending on what
modifications have to be performed to the resource graph, it uses a succession
of DELETE and INSERT statements, separated by a ; character. For example,
renaming the title of a container implies sending a DELETE query followed by
an INSERT query. An RDF-based pod server can easily support Solid patches
since the patch operations can be directly mapped into SPARQL 1.1 Update.

5.3 Access Control

When a user runs a Solid application, that application can access not only his/her
pod, but also the pods of other users. Different users and groups identified by
WebIDs can be allowed various forms of access to resources. We adopted the
WebAccessControl (WAC)! ontology to describe access control at the level of
a container or resource. WAC almost follows the access control system used
in Linux file systems. The WAC ontology has different types of access modes,
namely Read, Write, Control, and Append.

Each resource (containers included) can have an associated ACL resource
that can be manipulated just like any regular resource. If a container or resource
does not have an ACL, it inherits the authorization of its parent container. The
URIs for the ACL resources are advertised through Link headers that can be
discovered when doing HTTP GET/HEAD on regular resources. For example, a
container, whose URI is https://example.org/storage/, may have a corresponding
ACL resource with a URI ending with .acl, i.e. https://example.org/storage/.acl.
Alternatively, a resource https://example.org/storage/test may have a corre-
sponding ACL resource at hitps://example.org/storage/test.acl.

Our meccano server maintains ACL resources in the same RDF graph as
the data resources. ACLs are enforced transparently by re-writing the LDP or
SPARQL queries to check the ACLs against the corresponding triples. This
mechanism supports ACLs at the granularity of triples as well as resources.

'3 http://jena.apache.org
' https://github.com/solid /web-access-control-spec
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5.4 Live Updates

Solid applications can be made more responsive by receiving notifications or
live updates from a pod when a resource has been modified. It is much more
efficient to have the server notify the clients when changes occur in resources,
instead of the client periodically polling a pod for new information. We chose the
popular WebSocket protocol [6] to offer live updates by implementing a PubSub
system. Clients open a WebSocket connection and subscribe to a given resource
URI by sending a special command — e.g., sub https://example.org/data/test.
If any change occurs in that resource (i.e., update or delete), a publish event
is sent to all the subscribed clients — e.g., pub hitps://example.org/data/test —
triggering a refetch of the resource. The WebSocket server URI is the same for
any resource located on a given data space (same hostname). To discover the
URI of the WebSocket server, clients can use HTTP verbs like GET, HEAD and
OPTIONS. The server will include an Updates-Via header in the response — e.g.,
Updates-Via: wss://example.org/.

5.5 SPARQL Support

A pod server can optionally support SPARQL for complex data retrieval. A
server that uses an RDF database, such as meccano, supports SPARQL nat-
urally. A pod using the file system can also be extended to support SPARQL.
An interesting feature of meccano is that it supports link-following SPARQL
to enable complex data retrieval from multiple servers, thereby simplifying ap-
plication development. Meccano does not assume a priori knowledge about the
data or SPARQL endpoints. A preprocessing step is required to analyze the
link-following query and identify the endpoints to be contacted to answer the
query. An adaptive query execution plan is then generated and executed against
these endpoints to answer the query. In the evaluation, we show that meccano
efficiently supports queries accessing multiple remote pods. Moreover, meccano
can parallelize queries onto multiple threads on one or more machines, so it can
elastically scale to more cores as needed.

6 Evaluation: Applications development and Experiments

To evaluate the developer experience with the Solid platform, we have built
multiple social Web applications on Solid [9, 11]. This section gives an overview
of the main applications and describes some of the advanced Solid features that
they require (e.g., search in a remote pod). The section also conducts experiments
to show the scalability of link-following SPARQL using the solid platform.

6.1 Application Development in Solid

The Solid platform includes solid.js'®, a javascript library implementing the Solid
protocols. Readers are invited to use the solid.js tutorial'® [11]. We developed

!5 https://github.com/solid /solid.js
16 https://github.com/solid /solid-tutorial-intro
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Table 1. Solid applications. (*) indicates applications not developed by us.

Name Function Usable At

contacts Manage a list of contacts http://mzereba.github.io/contacts
cimba Microblogging (cf. Twitter) http://cimba.co

calendar Event manager http://mzereba.github.io/calendar
scheduler Meeting scheduler (cf. Doodle)  http://mzereba.github.io/scheduler
dokieli Decentralized authoring https://dokie.li

profile-editor View and update a user’s profile hitp://linkeddata.github.io/profile-editor
warp Solid file browser http://linkeddata. github.io /warp
zagel Instant messaging/group chat https://solid. github.io /solid-zagel
inbox Inbox app to process notifications hitps://solid.github.io/solid-inbox
*timeline decentralized social network http://solid-social. github.io0 /timeline
*shamblokus Strategy game (cf. Blokus) http://deiu.github.io/Shamblokus

several Solid applications for common day-to-day tasks (Table 1). This class
of applications accesses the pod of the user running the application and the
pods of users that he/she directly connects to (i.e., order of tens or hundreds
of pods). For this evaluation, all applications were developed as responsive Web
applications, tested in recent versions of Chrome or Firefox.

The Solid protocols guarantees efficient performance for social applications
regardless these applications use solid.js or not. However, solid.js aims at accel-
erating the development lifecycle of Solid applications by writing less code. In
order to verify that, on the one hand we developed some of the applications using
normal javascript frameworks and libraries, such as AngularJS and rdflib.js'?, to
access the users’ pods. Examples for these applications are our cimba, contact,
scheduler, and calendar applications. On the other hand, we developed appli-
cations using solid.js such as zagel and inbox. The readers are invited to review
the code and use both categories of applications. To use Solid applications, a user
needs to sign up with a pod provider and obtain a WebID (if needed) together
with data storage. For example, the pod of user Alice on our gold server running
at databoxz.me would be hitps://alice.databox.me/.

Applications store data in users’ pods and access it via LDP. It is possible
for all data in a pod to be organized into one container, with each application
using a single resource for all of its data. However, it is recommended that
applications developed by Solid take advantage of LDP container hierarchies,
especially if application data is expected to be large. For example, a contact list
application may be designed to hold vCard'® data in one file, which would make
it difficult to share individual contacts, or to store just each address line in one
resource, which would be too fine-grained. It is recommended that applications
divide data into resources at a reasonable granularity, which affects tasks such
as inserting, updating, deleting, or caching data. Note also that ACL policies
apply at the level of the resource, which impacts the granularity at which data

7 https://github.com/linkeddata,/rdflib.js
8 http://www.w3.org/2006/vCard
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Fig. 4. Examples of solid applications need link following queries.
can be shared. For example, one vCard or Event!'? per file allows a user to share
individual cards or calendar events with other users, see contact and calendar.

A Solid application can access containers or resources generated by another
Solid application as shown in Figure 3. Hence, Solid supports interoperability at
the data level rather than the API level. For example, the scheduler application
accesses the vCard resources generated by contacts to maintain a broad list
of candidate participants. Furthermore, calendar accesses the schedule events
generated by scheduler to optionally show these events as tentative scheduler
events. Intuitively, users move easily between different applications.

The calendar, scheduler, zagel, and inbox are examples of many use cases
that can work efficiently using LDP only. In scheduler, an event organizer write
via HTTP PUT an event invitation in the inbox container of a list of users’
pods. The scheduler application shows these invitations to the user to accept
or reject. In case of acceptance, the application copy only the details of the event
via HTTP GET but all responses of the invited users are written in the pod of
the event organizer via HTTP PUT. This workflow suits this use case where all
invited users fetch responses from one pod using a single HTTP GET. Solid is
flexible in supporting different workflows. For example chatting applications like
zagel, the workflow is to replicate a user’s post in both the user’s pod and pods
of individuals with whom the user is chatting. Thus, each user can access the
full chat with an individual/group with a single HTTP GET to the user’s pod.

There are also many use cases that need link following queries in order to
reduce the number of HTTP requests and offload computations from the client
to the pod server, as shown in Figure 4. Examples for this category of use cases

9 http:/ /motools.sourceforge.net /event /event.html
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Fig. 5. Scalability of link-following SPARQL for searching vCards to find vCards of
“Alice”, and fetching the 10 most recent posts from followed channels. Both queries
access up to 128 pod servers in the Azure public cloud (in USA and Europe).

are a microblogging, social netwrok, and contact management applications, such
as cimba [12], timeline, and contacts respectively. The cimba application
fetches posts from the channels referenced in the user’s subscriptions. A link
following SPARQL can be processed by the user’s pod server to fetch the top
recent posts in each followed channels and return to cimba the overall top recent
posts. contacts is a user interface to social graph information on the user’s pod.
This application provides an example of the innovative social features supported
by Solid, which enable powerful ways for finding and sharing resources based on
the social graph of the user. A link following SPARQL query can be processed
by the pod server to look for a specific vCard, i.e. a vCard with name Alice, in
all pods connected with the user’s pod via the WebID in his/her vCards.

Our experience with Solid application development confirms that Solid pro-
vides a feature-rich platform that supports portability and interoperability. Ap-
plications can work with multiple pod server implementations, and can be easily
changed without changing the data (e.g., by forking and adding features).

6.2 Scalability of Link-Following SPARQL

This section evaluates the performance of LF SPARQL on the meccano pod
server as we scale up the number of remote pods accessed by a Solid application.
For this experiment we use the contacts and cimba applications. The data used
in this experiment is synthetically generated RDF data, including user profiles,
vCards, and microblogging posts. We generated data for 128 users, where the
data for each user contains 1000 vCards and 5000 posts. The vCards and posts
are all public, and hence accessible by the SPARQL queries. These users are
assigned to different pods servers managed by meccano.

We ran our experiments on 19 virtual machines (VMs) on the Microsoft
Azure public cloud (D4 instance). Each virtual machine has 28GB RAM and
8 CPU cores. The VMs are distributed among 7 different geographic regions in
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USA and Europe. The 128 user pods are distributed evenly among meccano
instances on the 19 VMs. Each pod is given one core and 4GB of RAM.

Figure 5 shows how meccano scales for the two queries as we increase the
number of pods accessed by both queries from 2 to 128. Meccano analyzes the
input query and decomposes it into subqueries. During this analysis, meccano
also follows links to identify the corresponding pods (including the user’s pod)
to which the subqueries will be sent. The details of this query decomposition are
omitted due to lack of space. All remote subqueries are submitted simultane-
ously to the corresponding pods using HTTP requests. The results are collected
by meccano and joined together if needed. Our decomposition mechanism par-
allelizes access to remote pods and retrieves only relevant results from these
pods, which enables meccano to scale well for a broad class of Solid applica-
tions. Figure 5 shows that the time for fetching recent posts is almost flat as
the number of pods increases. This is because the LIMIT clause (i.e. top recent
posts) eliminates unnecessary results. The vCard search query is not as flat as
the recent posts query, although it still scales sublinearly (doubling the number
of pods less-than-doubles the execution time).

7 Related Work

Decentralizing social Web applications has been a long-standing goal for research
projects as well as the developer community. However, many of these projects
focus primarily on storing data in a decentralized way and sharing it within the
social networks of users, without a strong emphasis on how applications will
use this data. In contrast, Solid has a strong focus on decoupling data from
applications and in addition ensuring that applications have a simple, generic
and well defined way to access the data stored in the users’ pods.

Diaspora?® is a decentralized social network platform that enables users to
choose the server where their data is hosted and even run their own data hosting
server. In that sense, it is similar to Solid. However, the main focus in Diaspora is
to act as a social network, where social data is shared between users using specific
APIs, and not running diverse applications on stored data. Unfortunately, it does
not offer a well defined way to use the same data with different applications. Note
that Diaspora uses the term pod to refer to a data hosting server. A Diaspora
“pod” is what Solid would refer to as a “pod server”. Similar efforts include
Micropub?! and Pump.io?2.

Musubi [3] is a decentralized social network platform that enables users to
share data from mobile devices. The focus of Musubi is exchanging secured mes-
sages (via public key encryption) among friends or groups without an interme-
diary. Safebook [2] is another social network platform that focuses on security
and privacy by controlling how applications access the identities and private
data of users. Safebook proposes a decentralized architecture for identity and

20 https://diasporafoundation.org
2! https://indiewebcamp.com/Micropub
22 http://pump.io
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authentication in which the identities of users are hidden from applications and
multiple independent entities cooperate to grant access to user’s data. The data
exchanged on platforms like Musubi or Safebook can be sent and received by
applications such as photo sharing or online games. However, these platforms do
not specify how applications should store and access their data, so there is no
simple way to replace one application with another that reuses the same data.
That is, the data is not decoupled from the applications.

Some decentralized social network platforms decouple data from applications.
Two notable examples are WebBox [18] and the distributed semantic social net-
work architecture (DSSN) described in [16]. As Solid, both of these systems
store user’s data as Linked Data in a decentralized way. Also similar to Solid,
both systems rely on WebID for decentralized identity, authentication and ac-
cess control. In WebBox, each data storage service exposes a SPARQL endpoint,
and applications manipulate the data via SPARQL queries and updates, or via
HTTP GET requests. DSSN uses a publish /subscribe mechanism where applica-
tions subscribe to feeds and users publish data in these feeds. In contrast, Solid
offers the full power of LDP for simple data interactions (e.g., hierarchical data
organization, fine-grained manipulation) and additionally allows the use of link-
following SPARQL for complex data retrieval. It also works as a generic storage
platform upon which a significantly larger number of applications can be built.

Solid and similar platforms mentioned in this section provide mechanisms for
users and applications to create and share data in a decentralized way. Thus,
user’s data is never stored in a “data silo”. Another approach is to let the user’s
data reside in silos and provide a way for applications to access data in these
silos. This can be done by providing services such as Gigya??® and Janrain?* that
enable applications to access different social networks. It can also be done by
providing an integration layer that imports data from different data sources —
e.g., existing social networks, e-mail, web sites, and local files — and stores this
data in a personal datastore that is accessed by users and applications (e.g., [15,
19]). Such approaches can be viewed as complementary to Solid, since Solid may
benefit by gaining access to data that is stored in silos.

8 Conclusion

Solid uses Semantic Web technologies to decouple user data from the applications
that use this data, which makes it easy for users to switch between applications
that use the same data, and to switch between storage providers that host the
data. We presented the protocols used by Solid for decentralized authentication
and data access, and we described the necessary features required by a server
that implements these protocols. Our experience in building several applications
that use these servers demonstrates that Solid is a viable platform for social Web
applications. We aim at creating a developer community for Solid applications.

23 http://www.gigya.com
24 http://janrain.com
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